

Steel-concrete composite decks

- > Components:
 - 1. Steel frame
 - 2. Concrete slab
 - 3. Connectors

Material properties

		Steel	Concrete
E-modulus	[MPa]	210000	Short: 25000-45000 Long: 10000-25000
Weight	[kN/m ³]	77	25
Compressive strength	[MPa] ■	250-550 tends to buckle	30-100
Tensile strength	[MPa]	250-550	Small tends to crack

> Exploitation of the different properties of steel and concrete make composite construction economic

Bridge types for various span lengths

Bridge types for various span lengths

History

- > First examples back to 1920's
- > Became more common in 1970's due to new construction techniques and new design codes
- > Extend of composite bridges very different between countries
- Not very much used in Denmark probably mainly due to tradition, a large concrete industry and maintenance issues

Composite bridges in Denmark

Egernsundsbroen

Elbodalen

Hylkedalsbroen

Composite bridges in Denmark

Øresundsbron

Girder types – steel frame

- > I-girder sections
- > Box girder

Girder types – concrete slab

- > Concrete slab typically not less than 250mm thick
- > In situ concrete
 - > Uniform concrete
 - > Gives considerable work on site
- > Prefabricated element
 - > Less work on site optimised fabrication
 - > Less weather dependent
 - > Less creep and shrinkage
 - > Higher accuracy
 - > Not practical shear connection between steel and concrete
- > Prefabricated element + in situ concrete
 - Typically preferred method

Girder types – concrete prefabricated + in situ slab

Prefabricated filligran elements with in Prefabricated elements with situ stitches situ casting **on top** of prefab elements **between** prefab elements

Shear connectors

- > Types:
 - Headed studs
 - > Bars with hoops
 - > Channels

: COMPRESSION (strut) : TENSION (tie)

Design and structual calculations

> Stress and strains in composite section subjected to bending:

Positive bending moment

Negative bending moment

Negative bending moment should be limited. This can be done by "intelligent" construction methods

Design and structural calculations

- "Accounting" of section forces and stresses is more difficult to handle than for all steel sections
- Different sets of section forces and cross sections must be considered and superimposed:
 - Dead loads of steel and part of concrete typically taken in steel alone before composite action is achieved
 - > Composite action achieved gradually along the length of the bridge
- > Time depending factors:
 - > Due to creep forces tend to shed from concrete to steel for long term actions
 - Creep and shrinkage effects difficult to handle manually. Typically the FE-program includes creep and shrinkage which is modelled as part of the material properties. This requires relatively advanced calculation tools.
 - > Typically structure considered at time of opening of bridge (t=0) (governing for concrete) after end of service life (100 years) (governing for steel)

Bridge types for various span lengths

Constantine

> Four curved ramp bridges currently under construction

Constantine – reason for choosing composite

- > Difficult site conditions for access with steep slopes
- > Contractor preference to avoid expensive scaffolding on steep slopes but rather lift self supporting steel structure.

Constantine

Constantine

Steel box with 250mm concrete deck slab composed of filligran elements and in situ concrete on top

Constantine – steelwork

Constantine – steelwork

> Bracing

Constantine - Concrete slab

- > Prefabricated filligran elements with cast in reinforcement truss (85mm)
- > Prefabricated edge beams
- > In situ concrete cast in several stages (165mm)

Constantine – erection sequence

- > Substructure
- > Temporary supports
- > Steel girder
- > Steel connected
- > Prefab + concrete sides
- > Remove temporary supports
- > Prefab + concrete mid

Bridge types for various span lengths

Composite cable stayed bridges

When to use composite bridges

- > When steel and concrete can be utilised the way they work best
- > Reasons for choosing composite over steel bridges:
 - > Less expensive than orthotropic steel decks
 - Concrete requires less maintenance than steel
- > Reasons for choosing composite over concrete bridges:
 - > Gives smaller demands on substructures and stay cables
 - > Requires less temporary structures for execution
 - By using prefabricated elements it is possible to speed up construction and achieve high manufacturing accuracy

